Evidencias y estudios científicos
Especialmente dedicado a lo tituleros de bata blanca, algunos con fonendo al cuello, influencer de pacotilla
y a esos ratoncillos que todavía están dando vueltas en la rueda
1. Greene J, Louis J, Korostynska O, Mason A. State-of-the-art methods for skeletal muscle glycogen analysis in athletes-the need for novel non-invasive techniques. Biosensors. 2017;7
2. Noakes TD. What is the evidence that dietary macronutrient composition influences exercise performance? A narrative review. Nutrients. 2022;14(4):862.
3. Noakes TD, St Clair Gibson A. Logical limitations to the «catastrophe» models of fatigue during exercise in humans. Br J Sports Med. 2004;38(5):648–649
4. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohidratos para el entrenamiento y
la competición. J Sports Sci. 2011;29(Suppl 1):S17-S27
5. Burke LM. Dieta cetogénica baja en ECO y alta en grasas: ¿el futuro del deporte de resistencia de élite? J Physiol
2020; https://doi.org/10.1113/JP278928.
6. Choi YJ, Jeon SM, Shin S. Impact of a ketogenic diet on metabolic parameters in patients with obesity or overweight and with or without type 2 diabetes: A meta-analysis of randomized controlled trials. Nutrients. 2020;12 https://doi.org/10.3390/nu12072005.
7. Davis JJ, Fournakis N, Ellison J. Dieta cetogénica para el tratamiento y prevención de la demencia: una revisión. J Geriatric Psychiatry Neurol 2020;
https://doi.org/10.1177/0891988720901785 891988720901785.
8. Paoli A, Rubini A, Volek JS, Grimaldi KA. Más allá de la pérdida de peso: una revisión de los usos terapéuticos de las dietas muy bajas en carbohidratos (cetogénicas). Eur J Clin Nutr.
2013;67(8):789-796 https://doi.org/10.1038/ejcn.2013.116.
9. Sourbron J, Klinkenberg S, van Kuijk SMJ, et al. Dieta cetogénica para el tratamiento de la epilepsia pediátrica: revisión y metaanálisis. Child’s Nerv Syst. 2020;36(6):1099–1109 https://doi.org/10.1007/s00381-020-04578-7.11. Maffetone PB, Laursen PB. Athletes: fit but unhealthy?. Sports Med – Open. 2016;2:24
12. Kujala UM, Marti P, Kaprio J, Hernelahti M, Tikkanen H, Sarna S. Ocurrencia de enfermedades crónicas en ex deportistas de alto nivel ¿Predominio de los beneficios, los riesgos o los efectos de selección?
Sports Med. 2003;33(8):553–561 https://doi.org/10.2165/00007256-200333080-00001.
13. Saris WH, Antoine JM, Brouns F, et al. PASSCLAIM – rendimiento físico y forma física. Eur J Nutr. 2003;42(Suppl 1):I50-I95 https://doi.org/10.1007/s00394-003-1104-0.
14. Egan B, Zierath JR. Metabolismo del ejercicio y regulación molecular de la adaptación del músculo esquelético . Cell Metab. 2013;17(2):162–184
15. Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44(Suppl 1):S87-S96 https://doi.org/10.1007/s40279-014- 0154-1.
16. Jeukendrup AE. Nutrición para deportes de resistencia: maratón, triatlón y ciclismo de carretera. J Sports Sci. 2011;29(Suppl 1):S91-S99 https://doi.org/10.1080/02640414.2011.610348.
17. Noakes T. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. ScJ Med Sci Sports. 2000;10(3):123–145
18. Goodpaster BH, Sparks LM. Flexibilidad metabólica en la salud y la enfermedad. Cell
Metab. 2017;25(2):1027–1036.
19. Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism: Clin Exp. 1983;32(8):769-776
20. O’Keeffe KA, Keith RE, Wilson GD, Blessing DL. Dietary carbohydrate intake and endurance exercise performance of trained female cyclists. Nutr Res. 1989;9(8):819-830 https://doi.org/10.1016/S0271- 5317(89)80027-2.
21. Burke LM, Angus DJ, Cox GR, et al. Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol. 2000;89(6):2413- 2421.
22. Carey AL, Staudacher HM, Cummings NK, et al. Efectos de la adaptación a las grasas y el restablecimiento de los carbohidratos en el ejercicio de resistencia prolongado. J Appl Physiol. 2001;91(1):115-122.
23. Havemann L, West SJ, Goedecke JH, et al. La adaptación a la grasa seguida de una carga de carbohidratos compromete el rendimiento en sprints de alta intensidad. J Appl Physiol.
2006;100(1):194-202 https://doi.org/10.1152/japplphysiol.00813.2005.
24. Burke LM, Whitfield J, Heikura IA, et al. Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. J Physiol 2020; https://doi.org/10.1113/JP280221.
25. McSwiney FT, Fusco B, McCabe L, et al. Changes in body composition and substrate utilization after a short-term ketogenic diet in endurance-trained males. Biol Sport. 2020;38(1):145-152.
26. Lambert EV, Speechly DP, Dennis SC, Noakes TD. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol. 1994;69(4):287-293.
27. Goedecke JH, Christie C, Wilson G, et al. Adaptaciones metabólicas a una dieta alta en grasas en ciclistas de resistencia. Metabolism: Clin Exp. 1999;48(12):1509-1517
28. Lambert EV, Goedecke JH, van Zyl C, et al. Dieta alta en grasas versus dieta habitual previa a la carga de carbohidratos: Effects on exercise metabolism and cycling performance. Int J Sports Nutr Exerc Metab. 2001;11(2):209-225.
29. Rowlands DS, Hopkins WG. Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism: Clin Exp. 2002;51(6):678-690
30. Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. Efectos de una dieta cetogénica sobre el metabolismo del ejercicio y el rendimiento físico en ciclistas todoterreno. Nutrients. 2014;6(7):2493–2508 https://doi.org/10.3390/nu6072493.
31. Burke LM, Ross ML, Garvican-Lewis LA, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol. 2017;595(9):2785-2807 https://doi.org/10.1113/JP273230.32. Zinn C, Wood M, Williden M, Chatterton S, Maunder E. La dieta cetogénica beneficia la composición corporal y el bienestar, pero no el rendimiento en un estudio de caso piloto de atletas de resistencia . J Int Soc Sports Nutr. 2017;14:22 https://doi.org/10.1186/s12970-017- 0180-0.de Nueva Zelanda
33. Sitko S, Cirer-Sastre R, Lopez Laval I. Efectos de una dieta baja en carbohidratos sobre el rendimiento y la composición corporal en ciclistas entrenados. Nutrición Hospitalaria.
2019;36(6):1384–1388 https://doi.org/10.20960/nh.02762.
34. Prins PJ, Noakes TD, Welton GL, et al. Los altos índices de oxidación de grasas inducidos
por una dieta baja en carbohidratos y alta en grasas no perjudican el rendimiento en carreras
de 5 km en atletas recreativos de competición . J Sports Sci Med. 2019;18(4):738-750.
35. Podlogar T, Debevec T. Effects of a 14-day high-carbohydrate diet on exercise performance of a low-carbohydrate adapted athlete – case study. Kinesiol Slovenica. 2016;22(1):37-46.
36. McSwiney FT, Wardrop B, Hyde PN, Lafountain RA, Volek JS, Doyle L. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism: Clin Exp. 2018;83:e1-e2 https://doi.org/10.1016/j.metabol.2017.11.016.
37. Shaw DM, Merien F, Braakhuis A, Maunder ED, Dulson DK. Effect of a ketogenic diet on submaximal exercise capacity and efficiency in runners. Med Sci Sports Exerc.
2019;51(10):2135–2146 https://doi.org/10.1249/MSS0.0000000000002008.
38. Helge JW, Richter EA, Kiens B. Interaction of training and diet on metabolism and
endurance during exercise in man. J Physiol. 1996;492(Pt 1):293-306
39. Helge JW, Wulff B, Kiens B. Impact of a fat-rich diet on endurance in man: role of the dietary period. Med Sci Sports Exerc. 1998;30(3):456-461.
40. Heatherly AJ, Killen LG, Smith AF, et al. Efectos de una dieta ad libitum baja en carbohidratos y alta en grasas en corredores varones de mediana edad. Med Sci Sports Exerc.
2018;50(3):570–579 https://doi.org/10.1249/MSS.0000000000001477.
41. Fleming J, Sharman MJ, Avery NG, et al. Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int J Sport Nutr Exerc Metab. 2003;13(4):466- 478 https://doi.org/10.1123/ijsnem.13.4.466.
42. Webster CC, Swart J, Noakes TD, Smith JA. A carbohydrate ingestion intervention in an elite athlete who follows a low-carbohydrate high-fat diet. Int J Sports Physiol Perform. 2018;13(7):957–960 https://doi.org/10.1123/ijspp.2017-0392.
43. Stellingwerff T, Spriet LL, Watt MJ, et al. Disminución de la activación de la PDH y la
glucogenólisis durante el ejercicio después de la adaptación a la grasa con la restauración de hidratos de carbono. Am J Physiol Endocrinol Metab. 2006;290(2):E380–E388
44. Madera T. ¿Pérdida de maquinaria metabólica durante la cetosis? Depende de dónde se mire. Strenth Conditioning J. 2017;39(5):94.
45. Volek JS, Freidenreich DJ, Saenz C, et al. Metabolic characteristics of keto-adapted ultra- endurance runners. Metabolism: Clin Exp. 2016;65(3):100-110
46. Oppliger RA, Steen SA, Scott JR. Weight loss practices of college wrestlers. Int J Sport Nutr Exerc Metab. 2003;13(1):29–46 https://doi.org/10.1123/ijsnem.13.1.29.
47. Cadwallader AB, de la Torre X, Tieri A, Botre F. The abuse of diuretics as performance- enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis. Br J Pharmacol. 2010;161(1):1–16 https://doi.org/10.1111/j.1476- 5381.2010.00789.x.
48. Paoli A, Grimaldi K, D’Agostino D, et al. La dieta cetogénica no afecta al rendimiento de fuerza en gimnastas artísticos de élite. J Int Soc Sports Nutr. 2012;9(1):34.
49. Sawyer JC, Wood RJ, Davidson PW, et al. Efectos de una dieta restringida en carbohidratos a corto plazo en el rendimiento de fuerza y potencia. J Strength Conditioning Res. 2013;27(8):2255- 2262 https://doi.org/10.1519/JSC.0b013e31827da314.
50. Rhyu HS, Cho SY. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes. J Exerc Rehabilitación. 2014;10(5):326–331 https://doi.org/10.12965/jer.140160.
51. Gregory RM, Hamdan H, Torisky DM, Akers JD. Una dieta cetogénica baja en carbohidratos combinada con 6 semanas de entrenamiento de crossfit mejora la composición corporal y el rendimiento.Int J Sports Exerc Med. 2017;3 https://doi.org/10.23937/2469-5718/1510054.
52. Chatterton S, Zinn C, Helms E, Storey A. The effect of an 8-week low carbohydrate high fat (LCHF) diet in sub-elite Olympic weightlifters and powerlifters on strength, body composition, mental state and adherence: a pilot case-study. J Australian Strength Conditioning. 2017;25(2):6- 13.
53. Wilson JM, Lowery RP, Roberts MD, et al. Los efectos de la dieta cetogénica en la
composición corporal, la fuerza, la potencia y los perfiles hormonales en hombres que
entrenan resistencia. J Strength Conditioning Res 2017;
54. Miele E, Vitti S, Christoph L, O’Neill E, Matthews T, Wood R. The effects of a six-week ketogenic diet on the performance of short-duration, high-intensity exercise: a pilot study. Med Sci Sports Exerc. 2018;50(5S Suppl 1):792.
55. Vargas S, Romance R, Petro JL, et al. Eficacia de la dieta cetogénica en la composición corporal durante el entrenamiento de resistencia en hombres entrenados: un ensayo controlado aleatorizado. J Int Soc Sports Nutr. 2018;15(1):31 https://doi.org/10.1186/s12970-018-0236-9.
56. Greene DA, Varler BJ, Hartwig TB, Chapman P, Rugney M. Una dieta cetogénica baja en carbohidratos reduce la masa corporal sin comprometer el rendimiento en atletas de levantamiento de potencia y levantamiento de pesas olímpico. Strength Conditioning Res. 2018;32(12):3373-3382
57. Waldman HS, Krings BM, Basham SA, Smith JEW, Fountain BJ, McAllister MJ. Efectos de una dieta de 15 días baja en carbohidratos y alta en grasas en hombres entrenados en resistencia. J Strength Conditioning Res. 2018;32(11):3103-3111 https://doi.org/10.1519/JSC.0000000000002282.
58. Kephart WC, Pledge CD, Roberson PA, et al. The three-month effects of a ketogenic diet on body composition, blood parameters, and performance metrics in crossfit trainees: a pilot study. Sports. 2018;6 https://doi.org/10.3390/sports6010001.
59. Wroble KA, Trott MN, Schweitzer GG, Rahman RS, Kelly PV, Weiss EP. Low-carbohydrate, ketogenic diet impairs anaerobic exercise performance in exercise-trained women and men: a randomized-sequence crossover trial. J Sports Med Phys Finess. 2019;59(4):600–607 https://doi.org/10.23736/S0022- 4707.18.08318-4.
60. Vargas-Molina S, Petro JL, Romance R, et al. Efectos de una dieta cetogénica sobre la composición corporal y la fuerza en mujeres entrenadas. J Int Soc Sports Nutr.
2020;17(1):19 https://doi.org/10.1186/s12970-020-00348-7.
61. Bergstrom J, Furst P, Holmstrom BU, et al. Influencia de la lesión y la nutrición en los electrolitos del agua muscular: efecto de la operación electiva. Ann Surg. 1981;193(6):810-816 https://doi.org/10.1097/00000658-198106000-00017.
62. Cermak NM, van Loon LJ. El uso de carbohidratos durante el ejercicio como ayuda ergogénica. Sports Med. 2013;43(11):1139–1155 https://doi.org/10.1007/s40279-013-0079-0.
63. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle Part II: anaerobic energy, neuromuscular load and practical applications. Deportes Med. 2013;43(10):927–954 https://doi.org/10.1007/s40279-013-0066-5.
64. Dostal T, Plews DJ, Hofmann P, Laursen PB, Cipryan L. Efectos de una dieta de 12 semanas muy baja en carbohidratos y alta en grasas sobre la capacidad aeróbica máxima, el ejercicio intermitente de alta intensidad y la regulación autonómica cardiaca: Estudio no aleatorizado de grupos paralelos. Front Physiol. 2019;10:912 https://doi.org/10.3389/fphys.2019.00912.
65. Cipryan L, Plews DJ, Ferretti A, Maffetone PB, Laursen PB. Effects of a 4-week very low carbohydrate diet on high-intensity interval training responses. J Sports Sci Med. 2018;17(2):259-268.
66. Kysel P, Haluzikova D, Dolezalova RP, et al. La influencia de la dieta de reducción cetogénica cíclica vs dieta de reducción nutricionalmente equilibrada en la composición corporal, la fuerza y el rendimiento de resistencia en varones jóvenes sanos: un ensayo controlado aleatorizado. Nutrients. 2020;12 https://doi.org/10.3390/nu12092832.
67. Michalczyk MM, Chycki J, Zajac A, Maszczyk A, Zydek G, Langfort J. Rendimiento anaeróbico tras una dieta baja en carbohidratos (lcd) seguida de 7 días de carga de carbohidratos en jugadores masculinos de baloncesto. Nutrients. 2019;11 https://doi.org/10.3390/nu11040778.
68. Klement R, Frobel T, Albers T, Fikenzer S, Prinzhausen J, Ulrike K. A pilot case study on the impact of a self-prescribed ketogenic diet on biochemical parameters and running performance in healthy and physically active individuals. Nutr Med. 2013;1(1):10-37.
69. McKay AKA, Pyne DB, Peeling P, Sharma AP, Ross MLR, Burke LM. The impact of chronic carbohydrate manipulation on mucosal immunity in elite endurance athletes. J Sports Sci.2019;37(5):553–559 https://doi.org/10.1080/02640414.2018.1521712.
70. Waldman HS, Heatherly AJ, Killen LG, Hollingsworth A, Koh Y, O’Neal EK. A 3-week, low-carbhydrate, high-fat diet improves multiple serum inflammatory markers in endurance-trained males. J Strength Conditioning Res 2020; https://doi.org/10.1519/JSC.0000000000003761.
71. Shaw DM, Merien F, Braakhuis A, Keaney L, Dulson DK. Adaptation to a ketogenic diet modulates adaptive and mucosal immune markers in trained male endurance athletes. ScJ Med Sci Sports 2020; https://doi.org/10.1111/sms.13833.
72. Walsh NP. Nutrición y salud inmunitaria del deportista: nuevas perspectivas sobre un viejo paradigma. Sports Med. 2019;49(Suppl 2):153–168 https://doi.org/10.1007/s40279-019-01160-3.
73. David LA, Maurice CF, Carmody RN, et al. La dieta altera de forma rápida y reproducible el microbioma intestinal humano . Nature. 2014;505(7484):559–563
74. Ellerbroek A. El efecto de las dietas cetogénicas en la microbiota intestinal. J Exerc Nutr. 2018;1.
75. Hughes RL. Una revisión del papel del microbioma intestinal en la nutrición deportiva personalizada. Front Nutr. 2019;6:191 https://doi.org/10.3389/fnut.2019.00191.
76. Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Dieta cetogénica y microbiota: ¿ amigos o enemigos?. Genes. 2019;10 https://doi.org/10.3390/genes10070534.
77. Maunder E, Kilding A, Plews D. Substrate metabolism during ironman triathlon: different horses on the same courses. Sports Med. 2018;48(10):2219–2226.
78. Campbell B, Kreider RB, Ziegenfuss T, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007;4:8 https://doi.org/10.1186/1550-
2783-4-8.
79. Helms ER, Zinn C, Rowlands DS, Brown SR. A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. Int J sport Nutr Exerc Metab. 2014;24(2):127–138 https://doi.org/10.1123/ijsnem.2013-0054.
80. Harvey CJd C, Schofield GM, Williden M. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review. PeerJ. 2018;6:e4488 https://doi.org/10.7717/peerj.4488.
81. Harvey CJd C, Schofield G, Zinn C, Thornley SJ. Effects of differing levels of carbohydrate restriction on the achievement of nutritional ketosis, mood, and symptoms of carbohydrate withdrawal in healthy adults: a randomized clinical trial. Nutrition: X. 2019;2.
82. Volek J, Phinney S. The art and science of low carbohydrate living: an expert guide to making
the life-saving benefits of carbohydrate restriction sustainable and enjoyable Beyond Obesity
Llc 2011;.
83. Volek JS, Phinney SD. El arte y la ciencia del rendimiento bajo en carbohidratos; más allá de obesidad Miami, FL: LLC; 2012;.
84. Tiwari S, Riazi S, Ecelbarger CA. Insulin’s impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am J Physiol: Ren Physiol. 2007;293(4):F974- F984
85. Gibson AA, Eroglu EI, Rooney K, et al. Dipsticks de orina no son precisos para detectar cetosis leve durante una dieta severamente restringida en energía. Obes Sci Pract. 2020;6(5):544–551 https://doi.org/10.1002/osp4.432.
86. Zinn C, Rush A, Johnson R. Evaluación de la ingesta de nutrientes de una dieta baja en carbohidratos y alta en grasas (LCHF): un diseño de estudio de caso hipotético. BMJ Open 2018;8:e018846. Disponible en: https://doi.org/10.1136/bmjopen-2017-018846.
87. McSwiney FT, Doyle L. Low-carbohydrate ketogenic diets in male endurance athletes demonstrate different micronutrient contents and changes in corpuscular haemoglobin over 12 weeks. Sports. 2019;7 https://doi.org/10.3390/sports7090201.
88. Noakes T, Immda. Fluid replacement during marathon running. Clin J Sport Med.
2003;13(5):309–318 https://doi.org/10.1097/00042752-200309000-00007.
89. DeFronzo RA. The effect of insulin on renal sodium metabolism A review with clinical implications. Diabetologia. 1981;21(3):165–171 https://doi.org/10.1007/BF00252649.
90. DeFronzo RA, Goldberg M, Agus ZS. The effects of glucose and insulin on renal electrolyte transport. J Clin Investig. 1976;58(1):83–90 https://doi.org/10.1172/JCI108463.
91. Hamwi GJ, Mitchell MC, Wieland RG, Kruger FA, Schachner SS. Sodium and potassium metabolism during starvation. Am J Clin Nutr. 1967;20(8):897-902
https://doi.org/10.1093/ajcn/20.8.897.92. Schofield G, Zinn C, Rodger C. ¿Qué grasa? Sports performance: leaner, fitter, faster on lowcarb healthy fat Auckland, New Zealand: The Real Food Publishing Company; 2016;.
93. American College of Sports M, Sawka MN, Burke LM, et al. American College of Sports Medicine position stand Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–390
94. Noakes T. Waterlogged: serious Probl overhydration endurance sports Human Kinetics 2012;.
95. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical
research. Scan J Clin Lab Invest. 1975;35:609-616.
96. Bergström J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical
performance. Acta Physiol Scand. 1967;71:140-150.
97. Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol.
1971;31:203-206.
98. Gollnick PD. Metabolismo de sustratos: metabolismo de sustratos energéticos durante el ejercicio y modificado por el entrenamiento. Fed Proc. 1985;44:353-357.
99. Conlee RK. Muscle glycogen and exercise endurance: a twenty-year perspective. Exerc Sport Sci Rev. 1987;15:1-28.
100. Fitts RH. Mecanismos celulares de la fatiga muscular. Physiol Rev. 1994;74:49-93.
101. Febbraio MA, Dancey J. Skeletal muscle energy metabolism during prolonged, fatiguing exercise. J Appl Physiol. 2003;87:2341-2347.
102. Parkin JM, Carey MF, Zhao S, Febbraio MA. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol. 1999;86:902-908.
103. Baldwin J, Snow RF, Carey MF, Febbraio MA. Muscle IMP accumulation during fatiguing submaximal exercise in endurance trained and untrained men. Am J Physiol (Regulatory Integr Comp Physiol. 1999;277:R295-R300 46).
104. Baldwin J, Snow RJ, Gibala MJ, Garnham A, Howarth K, Febbraio MA. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. J Appl Physiol. 2003;94:2181- 2187.
105. Lorand L. ‘Adenosine triphosphate-creatine transphosphorylase’ as relaxing factor of muscle. Nature. 1953;172:1181-1183.
106. Christensen EH, Hansen O. Arbeitsfähigkeit und ernährung. Skand Arch Physiol.
1939;81:160-171.
107. Christensen EH, Hansen O. Hypoglykame, arbeitsfähigkeit und ermudung. Skand Arch Physiol. 1939;81:172-179.
108. Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JG. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol. 1983;55:230-235.
109. Coyle EF, Coggan AR. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61:165-172.
110. Coggan AR, Coyle EF. Reversión de la fatiga durante el ejercicio prolongado mediante
infusión o ingestión de carbohidratos . J Appl Physiol. 1987;63:2388-2395.
111. Coggan AR, Coyle EF. Metabolism and performance following carbohydrate ingestion late in exercise. Med Sci Sports Exerc. 1989;21:59-65.
112. Coyle EF. Alimentación con carbohidratos durante el ejercicio. Int J Sports Med. 1992;13:S126-S128.
113. Jeukendrup AE. Alimentación con carbohidratos durante el ejercicio. Eur J Sport Sci. 2008;8:77-86.
114. Jeukendrup AE, Jentjens R. Oxidación de la alimentación con hidratos de carbono durante
el ejercicio prolongado: ideas actuales, directrices y orientaciones para futuras investigaciones. Sports Med. 2000;29(6):407–424 https://doi.org/10.2165/00007256- 200029060-00004 PMID
10870867.
115. Costill DL, Hargreaves M. Carbohydrate nutrition and fatigue. Sports Med. 1992;13:86–92
116. Bourdas DL, Souglis A, Zacharakis ED, Geladas ND, Travlos AK. Meta-analysis of carbohydrate solution intake during prolonged exercise in adults: from the last 45+ years’ perspective. Nutrients. 2021;13:4223.
117. Rauch LHG, Bosch AN, Noakes TD, Dennis SC, Hawley JA. Fuel utilization during prolonged low- to-moderate intensity exercise when ingesting water or carbohydrate. Pflug Arch. 1995;430:971- 977.118. Wahren J, Felig G, Ahlborg G, Jorfeldt L. Glucose metabolism during leg exercise in man. J Clin Invest. 1971;50:2715-2725.
119. Wahren J. Glucose turnover during exercise in man. Ann N Y Acad Sci. 1977;301:45-55.
120. Smith JEW, Zachwieja JJ, Peronnet F, et al. Fuel selection and cycling endurance performance with ingestion of [(13) C]glucose: evidence for a carbohydrate dose response: evidence for a carbohydrate dose response. J Appl Physiol. 2010;108:1520-1529.
121. Green LF, Bagley R. Ingestion of a glucose syrup drink during long distance canoeing. Brit J Sports Med. 1972;6:125-128.
122. Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports Exerc. 1979;11:6-11.
123. Ivy JL, Miller W, Dover V, et al. Endurance improved by ingestion of a glucose polymer
supplement. Med Sci Sports Exerc. 1983;15:466-471.
124. Bjorkman O, Sahlin K, Hagenfeldt L, Wahren J. Influencia de la ingestión de glucosa y fructosa en la capacidad para el ejercicio a largo plazo en hombres bien entrenados. Clin Physiol. 1984;4:483- 494.
125. Hargreaves M, Costill DL, Coggan A, Fink WJ, Nishibata I. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med Sci Sports Exerc. 1984;16:219-222.
126. Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62:983-988.
127. Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19:597-604.
128. Mitchell JB, Costill DL, Houmard JA, Flynn MG, Fink WJ, Beltz JD. Effects of carbohydrate ingestion on gastric emptying and exercise p e r f o r m a n c e . Med Sci Sports Exerc. 1988;20:110-115.
129. Mitchell, J.B.. The effect of carbohydrate ingestion on gastric emptying, glycogen metabolism, and exercise performance. (Tesis doctoral). Ball State University, 1988.
130. Hargreaves M, Briggs GA. Effect of carbohydrate ingestion on exercise metabolism. J Appl Physiol. 1988;65:1553-1555.
131. Riley ML, Israel RG, Holbert D, Tapscott EB, Dohm GL. Effect of carbohydrate ingestion on exercise endurance and metabolism after a 1-day fast. Int J Sports Med. 1988;9:320-324.
132. Davis JM, Lamb DR, Pate RR, Slentz CA, Burgess WA, Bartoli WP. Carbohydrate-electrolyte drinks: effects on endurance cycling in the heat. Am J Clin Nutr. 1988;48:1023-1030.
133. Mitchell JB, Costill DB, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol.
1989;67:1843-1849.
134. Williams C, Nute MG, Broadbank L, Vinall S. Influence of fluid intake on endurance running performance A comparison between water, glucose and fructose solutions. Eur J Appl Physiol.
1990;60:112-119.
135. Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71:1082-1088.
136. Williams C, Brewer J, Walker M. The effect of a high carbohydrate diet on running performance during a 30-km treadmill time trial. Eur J Appl Physiol. 1992;65:18-24.
137. Murray R, Paul GL, Seifert JG, Eddy DE. Responses to varying rates of carbohydrate ingestion during exercise. Med Sci Sports Exerc. 1991;23:713-718.
138. Tsintzas K, Liu R, Williams C, Campbell I, Gaitanos G. The effect of carbohydrate ingestion on performance during a 30-km race. Int J Sport Nutr. 1993;3:127-139.
139. Widrick JJ, Costill DL, Fink WJ, Hickey MS, McConell GK, Tanaka H. Carbohydrate feedings and exercise performance: effects of initial muscle glycogen concentrations. J Appl Physiol.
1993;74:2998-3005.
140. Kang J, Robertson RJ, Denys BG, et al. Efecto de la ingestión de carbohidratos posterior a la supercompensación de carbohidratos en el rendimiento de resistencia. Int J Sport Nutr.
1995;5:329-343.
141. Anantaraman R, Carmines AA, Gaesser GA, Weltman A. Effects of carbohydrate supplementation on performance during 1 hour of high-intensity exercise. Int J Sports Med. 1995;16:461-465.142. McConell G, Kloot K, Hargreaves M. Effect of timing of carbohydrate ingestion on
endurance exercise performance. Med Sci Sports Exerc. 1996;28:1300-1304.
143. McConell G, Snow RJ, Proietto J, Hargreaves M. Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. J Appl Physiol. 1999;87:1083- 1086.
144. McConell G, Canny BJ, Daddo MC, Nance MJ, Snow RJ. Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise. J Appl Physiol. 2000;89:1690- 1698.
145. Angus DJ, Hargreaves M, Dancey J, Febbraio MA. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol.
2000;88(1):113-119.
146. Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA. Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J Appl Physiol. 2000;89:2220- 2226.
147. Ivy JL, Res PT, Sprague RC, Widzer MO. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab. 2003;13:382-395.
148. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40:275-281.
149. Newell ML, Hunter AM, Lawrence C, Tipton KD, Galloway SDR. La ingestión de 39 o 64 g.hr-1de carbohidratos es igualmente eficaz para mejorar el rendimiento en ejercicios de resistencia en ciclistas . Int J Sport Nutr Exerc Metabl. 2015;25:285-292.
150. Newell ML, Wallis GA, Hunter AM, Tipton KD, Galloway SDR. Metabolic responses to carbohydrate ingestion during exercise: association between carbohydrate dose and endurance performance. Nutrients. 2018;10:37.
151. King AJ, O’Hara JP, Morrison DJ, Preston T, King RFGJ. La dosis de carbohidratos influye en la oxidación del glucógeno hepático y muscular y en el rendimiento durante el ejercicio prolongado. Physiol Rep. 2018;6:e13555.
152. King AJ, O’Hara JP, Arjomandkhah NC, et al. Oxidación de glucógeno hepático y muscular y rendimiento con variación de dosis de ingestión de glucosa-fructosa durante ejercicio prolongado (3 h). Eur J Appl Physiol. 2019;119:1157-1169.
153. Fell JM, Hearris MA, Ellis DG, et al. Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle. J Physiol. 2021;599:2823-2849.
154. Rowe J, King RFGJ, King AJ, et al. El hidrogel de glucosa y fructosa mejora el rendimiento en carrera, la oxidación de carbohidratos exógenos y la tolerancia gastrointestinal. Med Sci Sports Exerc. 2022;54:129-140.
155. Tsintzas OK, Williams C, Singh R, Wilson W, Burrin J. Influence of carbohydrate-electrolyte drinks on marathon running performance. EurJ Appl Physiol. 1995;70:154-160.
156. Flynn MG, Costill DG, Hawley JA, et al. Influencia de determinadas bebidas con carbohidratos en el rendimiento ciclista y el uso de glucógeno. Med Sci Sports Exerc. 1987;16:37-40.
157. Sasaki H, Takaoka I, Ishiko T. Effects of sucrose or caffeine ingestion on running
performance and biochemical responses to endurance running. Int J Sports Med.
1987;8:203-207.
158. Davis JM, Burgess WA, Slentz CA, Bartoli WP, Pate RR. Effects of ingesting 6% and 12% glucose/electrolyte beverages during prolonged intermittent cycling in the heat. Eur J Appl Physiol. 1988;57:563-569.
159. Noakes TD, Lambert EV, Lambert MI, McArthur PS, Myburgh KH, Benade AJS. Carbohydrate ingestion and muscle glycogen depletion during marathon and ultramarathon racing. Eur J Appl Physiol. 1988;57:482-489.
160. Zachwieja JJ, Costill DL, Beard GC, Robergs RA, Pascoe DD, Anderson DE. The effects of a carbonated carbohydrate drink on gastric emptying, gastrointestinal distress, and exercise performance. Int J Sport Nutr. 1992;2:239-250.
161. Madsen K, MacLean DA, Kiens B, Christensen D. Effects of glucose, glucose plus branched- chain amino acids, or placebo on bike performance over 100 km. J Appl Physiol. 1996;81:2644-2650.
162. Pettersson S, Edin F, Bakkman L, McGawley K. Efectos de la suplementación con una bebida de hidrogel de hidratos de carbono al 18% frente a un placebo durante el ejercicio de cuerpo entero en –
O
5 C con deportistas de élite.Atletas de esquí de fondo: un estudio cruzado. J Int Soc Sports Nutr. 2019;16:46.
163. Burke LM, Hawley JA, Schabort EJ, St Clair Gibson A, Mujika I, Noakes TD. Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol. 2000;88:1284-1290.
164. Bosch AN, Kirkman M. Maintenance of hyperglycaemia does not improve performance in a 100 km cycling time trial. S Afr J Sports Med. 2007;19(3):94-98.
165. Chryssanthopoulos C, Williams C, Wilson W, Asher L, Hearne L. Comparison between carbohydrate feedings before and during exercise on running performance during a 30-km treadmill time trial. Int J Sport Nutr. 1994;4:374-384.
166. Brooks GA. Los preciados pocos gramos de glucosa durante el ejercicio. Int J Molec
Sci. 2020;21:5733.
167. Jeukendrup A, Brouns F, Wagenmakers AJM, Saris WHM. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18:125-129.
168. Murray R, Paul GL, Seifert JG, Eddy DE, Halaby GA. El efecto de la ingestión de glucosa, fructosa y sacarosa durante el ejercicio. Med Sci Sports Exerc. 1989;21:275-282.
169. Maughan RJ, Fenn CE, Leiper JB. Effects of fluid, electrolyte and substrate ingestion on endurance capacity. Eur J Appl Physiol. 1989;58:481-486.
170. Murray RS, Seifert JG, Eddy DE, Paul GA, Halaby GA. Carbohydrate feeding and exercise: effect of beverage carbohydrate content. Eur J Appl Physiol. 1989;59:152-158.
171. Wilber RL, Moffatt RJ. Influencia de la ingestión de hidratos de carbono en la glucemia y
el rendimiento de los corredores. Int J Sport Nutr. 1992;2:317-327.
172. El-Sayed MS, Rattu AJM, Roberts I. Effects of carbohydrate feeding before and during prolonged exercise on subsequent maximal exercise performance capacity. Int J Sport Nutr. 1995;5:215-224.
173. Below PR, Rodriguez R, Gonzalez-Alonso J, Coyle EF. La ingesta de líquidos y carbohidratos mejora de forma independiente el rendimiento durante 1 hora de ejercicio intenso. Med Sci Sports Exerc. 1995;27:200-210.
174. Maughan RJ, Bethell LR, Leiper JB. Effects of ingested fluids on exercise capacity and on cardiovascular and metabolic responses to prolonged exercise in man. Exp Physiol. 1996;81:847- 859.
175. Tsintsaz OK, Williams C, Wilson W, Burrin J. Influence of carbohydrate supplementation early in exercise on endurance running capacity. Med Sci Sports Exerc. 1996;28:1373-1379.
176. El-Sayed MS, Balmer J, Rattu AJM. Carbohydrate ingestion improves endurance performance during a 1 h simulated cycling time trial. J Sports Sci. 1997;15:223-230.
177. Millard-Stafford M, Rosskopf LB, Snow TK, Hinson BT. Water versus carbohydrate-
electrolyte ingestion before and during a 15-km run in the heat. Int J Sport Nutr. 1997;7:26-
38.
178. Rollo I, Williams C. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hr running performance test. Int J Sport Nutr Exerc Metab. 2009;19:645-658.
179. Flood TR, Montanari S, Wicks M, et al. La adición de pectina-alginato a una bebida de carbohidratos no mantiene la función de barrera gastrointestinal durante el ejercicio en condiciones de calor-humedad mejor que la ingestión de carbohidratos sola. Appl Physiol Nutr Metab.
2020;45:1145-1155.
180. Burke LM, Maughan RJ. The Governor has a sweet tooth – mouth sensing of nutrients to enhance sports performance. Eur J Sport Sci. 2014;15:29-40.
181. Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol. 1977;43:695-699.
182. Foster C, Costill DL, Fink WJ. Effects of preexercise feedings on endurance performance.
Med Sci Sports. 1979;11:1-5.
183. Lopez-Soldado I, Guinovart JJ, Duran J. Increased liver glycogen levels enhance exercise capacity in mice. J Biol Chem. 2021;297:100976.
184. Yeo WK, Carey AL, Burke L, Spriet L, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab. 2011;36:12-22.
185. Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1993;74:1923-1927.
186. Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76:2364-2372.187. Jeukendrup AE, Raben A, Gijsen A, et al. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion. J Physiol. 1999;515:579-589.
188. Gonzalez JT, Fuchs CJ, Smith FE, et al. La ingestión de glucosa o sacarosa previene el agotamiento del glucógeno hepático pero no el muscular durante el ejercicio prolongado de resistencia en ciclistas entrenados. Am J Physiol Endocrinol Metab. 2015;309:E1031–E1039.
189. Jeukendrup AE, Wagenmakers AJM, Stegen JHCH, Gijsen AP, Brouns F, Saris WHM. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol Endocrinol Metab. 1999;39:E672-E683.
190. Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE. Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc.
1985;17:472-476.
191. Wallis GA, Dawson R, Achten J, Webber J, Jeukendrup AE. Metabolic response to
carbohydrate ingestion during exercise in males and females. Am J Physiol Endocrinol Metab. 2006;290:E708-E715.
192. Stellingwerff T, Boon H, Gijsen AP, Stegen J,HCH, Kuipers H, van Loon LJC. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramuscular lipid use. Pflug Arch. 2007;454:635-647.
193. Bosch AN, Weltan SM, Dennis SC, Noakes TD. Fuel substrate turnover and oxidation and glycogen sparing with carbohydrate ingestion in non-carbohydrate-loaded cyclists. Pflug Arch. 1996;432:1003-1010.
194. Coyle EF, Hamilton MT, Alonso JG, Montain SJ, Ivy JL. Carbohydrate metabolism during intense exercise when hyperglycemic. J Appl Physiol. 1991;70:834-840.
195. Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF. Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol Endocrinol Metab. 1997;36:E768- E775.
196. Rennie MJ, Winder WW, Holloszy JO. A sparing effect of increased plasma free fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976;156:647-655.
197. Hickson RC, Rennie MJ, Conlee RK, Winder WW, Holloszy JO. Effects of increased plasma free fatty acids on glycogen utilization and endurance. J Appl Physiol. 1977;43:829-833.
198. Odland LM, Heigenhauser GJF, Wong D, Hollidge-Horvat MG, Spriet LJ. Effects of increased fat availability on fat-carbohydrate interaction during prolonged exercise in men. Am J Physiol Regulatory Integr Comp Physiol. 1998;43:R894-R902.
199. Gollnick PD, Piehl K, Saubert CW, Armstrong RB, Saltin B. Diet, exercise, and glycogen changes in human muscle fibers. J Appl Physiol. 1972;33:421-425.
200. Gollnick PD, Pernow B, Essen B, Jansson E, Saltin B. Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clin Physiol. 1981;1:27- 42.
201. Shearer J, Marchand I, Tarnopolsky MA, Dyck DJ, Graham TE. Pro- y macroglycogenolysis durante ejercicio repetido: papeles del contenido del glycogen y de la activación del phosphorylase. J Appl Physiol. 2001;90:880-888.
202. Wojtaszewski JFP, MacDonald C, Nielsen JN, et al. Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 2003;284:E813-E822.
203. Weltan SM, Bosch AN, Dennis SC, Noakes TD. Influence of muscle glycogen content on metabolic regulation. Am J Physiol Endocrinol Metab. 1998;274:E72-E82.
204. Weltan SM, Bosch AN, Dennis SC, Noakes TD. Preexercise muscle glycogen content affects metabolism during exercise despite maintenance of hyperglycemia. Am J Physiol Endocrinol Metab.
1998;274:E83-E88.
205. Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol. 1995;78:288-292.
206. Arkinstall MJ, Bruce CR, Clark SA, Rickards CA, Burke LM, Hawley JA. Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. J Appl Physiol. 2004;97:2275-2283.
207. Spencer, M.K.; Yan, Z.; Katz, A.. Effect of low glycogen on carbohydrate and energy metabolism in human muscle during exercise. Am. J. Physiol. Cell Physiol. 31, 1992, C975- C979.
208. Margolis LM, Wilson MA, Whitney CC, et al. El ejercicio con bajo contenido de glucógeno muscular aumenta la oxidación de grasas y disminuye los carbohidratos endógenos, pero no los exógenos.oxidación. Metab Clin Exp. 2019;97:1-8.
209. McConell G, Fabris S, Proietto J, Hargreaves M. Effects of carbohydrate ingestion on glucose kinetics during exercise. J Appl Physiol. 1994;77:1537-1541.
210. Rauch HGL, Hawley JA, Noakes TD, Dennis SC. Fuel metabolism during ultra-endurance exercise. Pflug Arch. 1998;436:211-219.
211. Bosch AN, Weltan SM, Dennis SC, Noakes TD. Fuel substrate kinetics of carbohydrate loading differs from that of carbohydrate ingestion during prolonged exercise. Metabolism. 1996;45:415-423.
212. Hawley JH, Bosch AN, Weltan SM, Dennis SC, Noakes TD. Effect of glucose ingestion or glucose infusion on fuel substrate kinetics during prolonged exercise. Eur J Appl Physiol.
1994;68:381-389.
213. Hawley JH, Bosch AN, Weltan SM, Dennis SC, Noakes TD. Glucose kinetics during prolonged exercise in euglycaemic and hyperglycaemic subjects. Pflug Arch. 1994;426:378- 386.
214. Jenkins AB, Chrisholm DJ, Ho JKY, Kraegen EW. Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supply. Metabolism. 1985;34:431-436.
215. Newsholme E, Leech T. Capítulo 6 Metabolismo de los carbohidratos. En: Newsholme E, Leech T, eds. Functional biochemistry in health and disease. West Sussex, UK: Wiley-Blackwell; 2009;.
216. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt J-P, Jequier E. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr. 1988;48:240-247.
217. Parks EJ. Effect of dietary carbohydrate on triglyceride metabolism in humans. J Nutr.
2001;131:2772S-2774S.
218. González JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311:E543-E553.
219. Izumida Y, Yahagi N, Takeuchi Y, et al. La escasez de glucógeno durante el ayuno activa el neurocircuito cerebro-adiposo hígado- para facilitar la utilización de las grasas. Nat Comm. 2013;4:2930.
220. Yahagi N. Control hepático del metabolismo energético a través del sistema nervioso autónomo. J Atheroscler Thromb. 2017;24:14-18.
221. Wasserman DH. Cuatro gramos de glucosa. Am J Physiol Endocrinol Metab. 2009;296:E11- E21.
222. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab. 1993;28:E380-E391.
223. Trimmer JK, Schwarz J-M, Casazza GA, Horning MA, Rodriguez N, Brooks GA. Measurement of gluconeogenesis in exercising men by mass isotopomer distribution analysis. J Appl Physiol. 2002;93:233-241.
224. Jeukendrup A, Moseley L, Mainwaring GL, Samuels S, Perry S, Mann CH. Exogenous carbohydrate oxidation during ultraendurance exercise. J Appl Physiol. 2006;100:1134- 1141.
225. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF. Metabolismo cerebral durante el ayuno. J Clin Invest. 1967;46:1589-1595.
226. Matsui T, Ishikawa T, Ito H, et al. Supercompensación de glucógeno cerebral tras ejercicio exhaustivo . J Physiol. 2012;590:607-616.
227. Matsui T, Omuro H, Liu Y-F, et al. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Nat Acad Sci. 2017;114:6358- 6363.
228. Webster CC, Noakes TD, Chacko SK, Smith JA. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low-carbohydrate high-fat diet. J Physiol. 2016;594:4389-4405.
229. Owen OE. Ketone bodies as a fuel for the brain during starvation. Biochem Mol Biol Edu. 2005;33:246-251.
230. Noakes TD. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Front Physiol. 2012;3:82.
231. Auer RN. Daño cerebral hipoglucémico. Metab Brain Dis. 2004;19:169-175.
232. Roh E, Song DK, Kim M-S. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med. 2016;48:e216.233. Nybo L, Moller K, Pedersen BK, Nielsen B, Secher NH. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol Scand. 2003;179:67-74.
234. Nybo L. Fatiga del SNC y ejercicio prolongado: efecto de la suplementación con glucosa. Med Sci Sports Exerc. 2003;35:589-594.
235. Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol.
1990;68:990-996.
236. Coggan AR. Plasma glucose metabolism during exercise: effect of endurance training in
humans. Sports Med. 1997;29:620-627.
237. Fitts RH, Booth FW, Winder WW, Holloszy JO. Skeletal muscle respiratory capacity,
endurance, and glycogen utilization. Am J Physiol. 1975;228:1029-1033.
238. Maughan RJ, Burke LM, Dvorak J, et al. Declaración de consenso del COI: suplementos dietéticos y el atleta de alto rendimiento. Br J Sports Med. 2018;52(7):439–455
239. Peeling P, Castell LM, Derave W, de Hon O, Burke LM. Sports foods and dietary
supplements for optimal function and performance enhancement in track-and-field athletes.
Int J Sport Nutr Exerc Metab. 2019;29(2):198–209 https://doi.org/10.1123/ijsnem.2018-0271.
240. Baur DA, Vargas F, de CS, Bach CW, Garvey JA, Ormsbee MJ. El almidón modificado de absorción
lenta antes y durante el ciclismo prolongado aumenta la oxidación de grasas y el malestar gastrointestinal sin cambiar el rendimiento. Nutrients 2016;
241. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Hidratos de carbono para el
entrenamiento y la competición. J Sports Sci 2011;
242. de Oliveira EP, Burini RC. Malestar gastrointestinal dependiente de carbohidratos e inducido por el ejercicio. Nutrients 2014; https://doi.org/10.3390/nu6104191.
243. Pöchmüller M, Schwingshackl L, Colombani PC, Hoffmann G. A systematic review and meta- analysis of carbohydrate benefits associated with randomized controlled competition- based performance trials. J Int Soc Sports Nutr 2016; https://doi.org/10.1186/s12970-016- 0139-6.
244. Quinones MD, Lemon PWR. La ingestión de almidón de maíz modificado hidrotérmicamente atenúa las disminuciones en el rendimiento de la habilidad futbolística en la segunda mitad de un partido de fútbol simulado. Int J Sport Nutr Exerc Metab 2019;
245. Peart DJ. Cuantificación del efecto del enjuague bucal con carbohidratos en el rendimiento del ejercicio. J Strength Cond Res 2017; https://doi.org/10.1519/JSC.0000000000001741.
246. Jeukendrup AE, Thielen JJ, Wagenmakers AJ, Brouns F, Saris WH. Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr. 1998;67(3):397-404.
247. Clegg ME. Medium-chain triglycerides are advantageous in promoting weight loss although not beneficial to exercise performance. Int J Food Sci Nutr 2010;
248. Jäger R, Kerksick CM, Campbell BI, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr 2017; https://doi.org/10.1186/s12970- 017-0177-8.
249. Valenzuela PL, Morales JS, Castillo-García A, Lucia A. Acute ketone supplementation and exercise performance: a systematic review and meta-analysis of randomized controlled trials. Int J Sports Physiol Perform. 2020;15(3):298-308.
250. Margolis LM, O’Fallon KS. Utilidad de la suplementación con cetonas para mejorar el rendimiento físico: una revisión sistemática. Adv Nutr 2020;
251. Poffé C, Ramaekers M, Van Thienen R, Hespel P. La suplementación con ésteres cetónicos
atenúa los síntomas de sobrecarga durante la sobrecarga del entrenamiento de resistencia. J Physiol 2019; https://doi.org/10.1113/JP277831.
252. Kreider RB, Kalman DS, Antonio J, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 2017; https://doi.org/10.1186/s12970-017-0173-z.253. Kaviani M, Shaw K, Chilibeck PD. Benefits of creatine supplementation for vegetarians compared to omnivorous athletes: a systematic review. Int J Env Res Public Health 2020;
254. Grgic J, Grgic I, Pickering C, et al. Infografía Wake up and smell the coffee: caffeine supplementation and exercise performance. Br J Sports Med 2020;
255. Stecker RA, Harty PS, Jagim AR, Candow DG, Kerksick CM. Timing of ergogenic aids and micronutrients on muscle and exercise performance. J Int Soc Sports Nutr 2019; https://doi.org/10.1186/s12970- 019-0304-9.
256. Salinero JJ, Lara B, Del Coso J. Efectos de la ingesta aguda de cafeína en el rendimiento deportivo de equipo: una revisión sistemática y metaanálisis. Res Sport Med 2019;
257. Burke LM. Cuestiones prácticas en el uso basado en la evidencia de suplementos de rendimiento: interacciones entre suplementos, uso repetido y respuestas individuales. Sport Med 2017;
258. Spriet LL. Ejercicio y rendimiento deportivo con dosis bajas de cafeína. Sport Med 2014;
259. Burke LM. La cafeína y el rendimiento deportivo. Appl Physiol Nutr Metab. 2008;33:1319–1334 https://doi.org/10.1139/H08-130.
260. Peeling P, Binnie MJ, Goods PSR, Sim M, Burke LM. Suplementos basados en la evidencia para la mejora del rendimiento atlético. Int J Sport Nutr Exerc Metab 2018;
261. McNaughton LR, Gough L, Deb S, Bentley D, Sparks SA. Desarrollos recientes en el uso de bicarbonato de sodio como ayuda ergogénica. Curr Sports Med Rep 2016;
262. Hadzic M, Eckstein ML, Schugardt M. El impacto del bicarbonato de sodio en el rendimiento en respuesta a la duración del ejercicio en atletas: una revisión sistemática. J Sport Sci Med 2019; https://doi.org/10.25932/publishup-42807.
263. Carr AJ, Sharma AP, Ross ML, Welvaert M, Slater GJ, Burke LM. Chronic ketogenic low carbohydrate high fat diet has minimal effects on acid-base status in elite athletes.
Nutrients 2018; https://doi.org/10.3390/nu10020236.
264. Trexler ET, Smith-Ryan AE, Stout JR, et al. International society of sports nutrition position stand: beta-alanine. J Int Soc Sports Nutr 2015; https://doi.org/10.1186/s12970- 015-0090-y.
265. Saunders B, Elliott-Sale K, Artioli GG, et al. Suplementos de β-alanina para mejorar la capacidad de ejercicio y el rendimiento: una revisión sistemática y meta-análisis. Br J Sports Med 2017;
266. Rojas-Valverde D, Montoya-Rodríguez J, Azofeifa-Mora C, Sanchez-Urena B. Effectiveness of beetroot juice derived nitrates supplementation on fatigue resistance during repeated- sprints: a systematic review. Crit Rev Food Sci Nutr 2020; https://doi.org/10.1080/10408398.2020.1798351.
267. San Juan AF, Domínguez R, Lago-Rodríguez Á, Montoya JJ, Tan R, Bailey SJ. Efectos de la suplementación dietética con nitratos en el rendimiento del ejercicio de levantamiento de pesas en adultos sanos: una revisión sistemática. Nutrients 2020; https://doi.org/10.3390/nu12082227.
268. Greco T, Glenn TC, Hovda DA, Prins ML. La dieta cetogénica disminuye el estrés oxidativo y mejora la actividad del complejo respiratorio mitocondrial. J Cereb Blood Flow Metab 2016; https://doi.org/10.1177/0271678X15610584.
269. Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ. Ergogenic effect of nitrate supplementation: a systematic review and meta-analysis. Med Sci Sports Exerc 2020; https://doi.org/10.1249/MSS.0000000000002363.
270. Décombaz J, Arnaud MJ, Milon H, et al. Metabolismo energético de los triglicéridos de cadena media frente a los hidratos de carbono durante el ejercicio. Eur J Appl Physiol Occup Physiol. 1983;52(1):9-14.
271. Van Zyl CG, Lambert EV, Hawley JA, Noakes TD, Dennis SC. Effects of medium-chain triglyceride ingestion on fuel metabolism and cycling performance. J Appl Physiol. 1996;80(6):2217-2225.
272. Jeukendrup AE, Saris WH, Schrauwen P, Brouns F, Wagenmakers AJ. Metabolic availability of medium-chain triglycerides coingested with carbohydrates during prolonged exercise. J Appl Physiol. 1995;79(3):756-762.273. Goedecke JH, Elmer-English R, Dennis SC, Schloss I, Noakes TD, Lambert EV. Effects of medium-chain triaclyglycerol ingested with carbohydrate on metabolism and exercise performance. Int J Sport
Nutr. 1999;9(1):35-47.
274. Shaw DM, Merien F, Braakhuis A, Maunder E, Dulson DK. Exogenous ketone supplementation and keto-adaptation for endurance performance: disentangling the effects of two distinct metabolic states. Sports Med. 2019;50(4):641-656.
275. Margolis LM, O’Fallon KS. Utilidad de la suplementación con cetonas para mejorar el
rendimiento físico : una revisión sistemática. Adv Nutr. 2019;31(6):834-838.
276. Soto-Mota A, Vansant H, Evans RD, Clarke K. Seguridad y tolerabilidad de la cetosis exógena
sostenida utilizando bebidas de monoésteres cetónicos durante 28 días en adultos sanos. Regulatory Toxicol Pharmacol 2019; https://doi.org/10.1016/j.yrtph.2019.104506.
277. L KM, A SJ, N HP, et al. A pre-workout supplement of ketone salts, caffeine, and amino acids
improves high-intensity exercise performance in keto-naïve and keto- adapted individuals. J Am
Coll Nutr. 2020;0(0):1-11.
278. Stubbs BJ, Cox PJ, Kirk T, Evans RD, Clarke K. Gastrointestinal effects of exogenous ketone drinks are infrequent, mild, and vary according to ketone compound and dose. Int J Sport Nutr Exerc Metab. 2019;29(6):596-603.
279. Evans M, Egan B. Intermittent running and cognitive performance after ketone ester
ingestion. Med Sci Sports Exerc. 2018;50(11):2330–2338.
280. Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM. Ketone diester ingestion impairs time-
trial performance in professional cyclists. Front Physiol. 2017;8 41-10.
281. Shaw DM, Merien F, Braakhuis A, Plews D, Laursen P, Dulson DK. The effect of 1,3- butanediol on
cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2019;29(5):466-473.
282. Cox PJ, Kirk T, Ashmore T, et al. Nutritional ketosis alters fuel preference and thereby
endurance performance in athletes. Cell Metab. 2016;24(2):256-268.
283. O’Malley T, Myette-Côté É, Durrer C, Little JP. Nutritional ketone salts increase fat oxidation
but impair high-intensity exercise performance in healthy adult males. Appl Physiol Nutr
Metab. 2017;42(10):1031–1035.
284. Dearlove DJ. Cetoacidosis nutricional durante el ejercicio incremental en atletas sanos.
fphys-10-00290tex, 2019; 1-6.
285. Evans M, McSwiney FT, Brady AJ, Egan B. No benefit of ingestion of a ketone monoester supplement on 10-km running performance. Med Sci Sports Exerc. 2019;51(12):2506–2515.
286. Faull OK. Beyond RPE: the perception of exercise under normal and ketotic conditions.
fphys-10-00229tex, 2019; 1-10.
287. Prins PJ, Koutnik AP, D’Agostino DP, et al. Efectos de un suplemento exógeno de cetonas en el rendimiento en carrera de cinco kilómetros. J Hum Kinetics. 2020;72(1):115-127.
288. Rodger S, Plews D, Laursen P, Driller MW. Oral β-hydroxybutyrate salt fails to improve 4- minute cycling performance following submaximal exercise. 2017; 6(1):26-31.
289. Scott BE, Laursen PB, James LJ, et al. Efecto de la suplementación con 1,3-butanediol y
carbohidratos en el rendimiento en carrera. J Sci Med Sport 2018;:1-5.
290. Waldman HS, Shepherd BD, Egan B, McAllister MJ. Exogenous ketone salts do not improve
cognitive performance during a dual-stress challenge. Int J Sport Nutr Exerc Metab.
2020;30(2):120-127.
291. Hargreaves M, Spriet LL. Metabolismo energético del músculo esquelético durante el ejercicio. Nat Metab 2020; https://doi.org/10.1038/s42255-020-0251-4.